"We build it, we deploy it, we manage and maintain high availability & quality of service in production." --Ethos

ANH Innocation Centers LLM Solution Roadmap

From SharePoint ETL to Sustainable Multi-Species AI Platform


Value Proposition: Transform fragmented SharePoint archives into an intelligent, searchable knowledge base that accelerates R&D across all species and innovation centers.

Compute & Storage = Programs | AI + Data = Value

This roadmap outlines the evolution from proof-of-value demonstration to enterprise-scale sustainable solution, acknowledging architectural volatility while prioritizing rapid value realization.


Diagram 1: POV Architecture (What We Built to Prove Value)

┌─────────────────────────────────────────────────────────────────────────┐
│                         POV: PROOF OF VALUE                             │
│                    "This Works But Isn't Sustainable"                   │
└─────────────────────────────────────────────────────────────────────────┘

                         CURRENT STATE (Week 1-6)
                                    
┌──────────────────┐
│  SharePoint      │  ◄─── Single Site, Manual Process
│  Online Archive  │       • Poultry nutrition docs only
│  (Nested ZIPs)   │       • ~10K-50K documents
└────────┬─────────┘       • Business hours only (9am-5pm)
         │ Delta Query API
         │ Every 15 min
         ▼
┌────────────────────────────────────────────────────────────────────┐
│  Azure Durable Functions (Consumption Plan - $5-20/mo)             │
│  ┌──────────────┐    ┌─────────────┐    ┌─────────────────┐        │
│  │ Timer        │───▶│ Orchestrator│───▶│ Parallel        │        │
│  │ Trigger      │    │ (Fan-out)   │    │ Processing      │        │
│  │ (15 min)     │    │             │    │ (100 concurrent)│        │
│  └──────────────┘    └─────────────┘    └────────┬────────┘        │
│                                                  │                 │
│  Processing Pipeline:                            │                 │
│  1. Extract nested ZIPs (recursive, max depth 10)│                 │
│  2. Multi-format extraction (PDF/Excel/Word/PPT) │                 │
│  3. Chunk text (512 tokens, 50 overlap)          │                 │
│  4. Generate embeddings (batch of 16)            │                 │
│  5. Upload to search (batch of 100)              │                 │
└──────────────────────────────────────────────────┬-────────────--──┘
                                                   │
                                                   ▼
┌─────────────────────────────────────────────────────────────────────┐
│  Azure AI Search - BASIC TIER ($75/mo)                              │
│  • Single index: "swine-protocols-data"                             │
│  • 50K-150K documents max                                           │
│  • 15 indexes, 45GB storage                                         │
│  • NO high availability (single replica)                            │
│  • 1024-dim vectors (text-embedding-3-large)                        │
│  • Hybrid search: Keyword (BM25) + Vector + Semantic Ranking        │
└─────────────────────────┬───────────────────────────────────────────┘
                          │
                          ▼
┌─────────────────────────────────────────────────────────────────────┐
│  Azure AI Foundry / GPT-4o RAG                                      │
│  • Simple Prompt Flow interface                                     │
│  • Manual query enhancement                                         │
│  • Basic citation extraction                                        │
│  • 100 pilot users (R&D team only)                                  │
└─────────────────────────┬───────────────────────────────────────────┘
                          │
                          ▼
                  ┌───────────────┐
                  │ Basic Web UI  │  ◄─── Prompt Flow Demo Interface
                  │ (Pilot Only)  │       • No authentication
                  └───────────────┘       • No usage tracking
                                          • No API layer

═══════════════════════════════════════════════════════════════════════

                    LIMITATIONS & RISKS

⚠️  NOT INTEGRATED: Siloed from other ANH AI capabilities
⚠️  NOT SCALABLE: Basic tier limits prevent growth
⚠️  SINGLE SPECIES: Only poultry data, no swine/aqua/pet
⚠️  NO GOVERNANCE: No access controls, audit trails, or compliance
⚠️  MANUAL PROCESS: Requires intervention for new data sources
⚠️  FRAGILE: No disaster recovery, single point of failure
⚠️  LIMITED UI: Demo interface unsuitable for production use
⚠️  NO API: Other applications cannot leverage the data

═══════════════════════════════════════════════════════════════════════

                    VALUE DEMONSTRATED

✓  Search success rate: 72% (vs 45% SharePoint baseline)
✓  Time to information: 60% reduction (5 min → 2 min avg)
✓  Zero-result queries: 4% (vs 18% baseline)
✓  User satisfaction: 8.3/10 (pilot group)
✓  ROI: 5,436% (conservative: 1,089%)
✓  Payback period: 6.6 days

💰 Total POV Cost: $360 (3 months) | Value: $389,063 (quarterly savings)

Diagram 2: MVP Architecture (Sustainable Foundation)

┌─────────────────────────────────────────────────────────────────────────┐
│                    MVP: MINIMUM VIABLE PRODUCT                          │
│           "Ground Work for Sustained, Scalable Capability"              │
│                     Timeline: Months 4-9 (6 months)                     │
└─────────────────────────────────────────────────────────────────────────┘

┌──────────────────────────────────────────────────────────────────────┐
│                    DATA SOURCES (EXPANDED)                           │
│  ┌───────────────┐  ┌───────────────┐  ┌───────────────┐             │
│  │ SharePoint    │  │ SharePoint    │  │ SharePoint    │             │
│  │ Poultry Site  │  │ Swine Site    │  │ Aqua Site     │             │
│  └───────┬───────┘  └──────-─┬──────┘  └───-────┬──────┘             │
│          │                   │                  │                    │
│          └───────────────────┴──────────────────┘                    │
│                              │                                       │
│                    Multi-Site Delta Query                            │
│                     (Innovation Center Aware)                        │
└──────────────────────────────┬──────────────────────────────────────-┘
                               │
                               ▼
┌──────────────────────────────────────────────────────────────────────┐
│           UNIFIED ETL ORCHESTRATION LAYER                            │
│                                                                      │
│  ┌────────────────────────────────────────────────────────────────┐  │
│  │  Azure Data Factory (OR) Durable Functions Premium Plan        │  │
│  │  • Multi-site orchestration with site-specific configs         │  │
│  │  • Automated schema detection per Innovation Center            │  │
│  │  • Quality gates: validation, deduplication, metadata checks   │  │
│  │  • Lineage tracking: source → processing → indexing            │  │
│  └────────────────────────────────────────────────────────────────┘  │
│                                                                      │
│  ┌─────────────────────┐        ┌──────────────────────────┐         │
│  │ Processing Modules  │        │ Intermediate Storage     │         │
│  │ • ZIP extractor     │───────▶│ Azure Blob Storage       │         │
│  │ • Format parsers    │        │ (Hot tier)               │         │
│  │ • Chunking engine   │        │ • Raw documents          │         │
│  │ • Embedding service │        │ • Processed chunks       │         │
│  │ • Metadata enricher │        │ • Audit logs             │         │
│  └─────────────────────┘        └──────────────────────────┘         │
└──────────────────────────────┬───────────────────────────────────────┘
                               │
                               ▼
┌──────────────────────────────────────────────────────────────────────┐
│  Azure AI Search - STANDARD S1 ($500/mo)                             │
│  • 2 replicas (99.9% SLA for reads)                                  │
│  • Multiple indexes by species/center                                │
│  • Cross-species federated search capability                         │
│                                                                      │
│  Index Structure:                                                    │
│  ├─ poultry-nutrition-data                                           │
│  ├─ swine-nutrition-data                                             │
│  ├─ aqua-nutrition-data                                              │
│  └─ pet-nutrition-data (future)                                      │
│                                                                      │
│  Features:                                                           │
│  • Hybrid search (keyword + vector + semantic)                       │
│  • Security trimming (user-level access control)                     │
│  • Custom analyzers for scientific nomenclature                      │
│  • Synonym maps for cross-species terminology                        │
└──────────────────────────────┬───────────────────────────────────────┘
                               │
                               ▼
┌──────────────────────────────────────────────────────────────────────┐
│                    MANAGEMENT & API LAYER (NEW)                      │
│                                                                      │
│  ┌────────────────────────────────────────────────────────────────┐  │
│  │  Azure API Management ($140/mo Developer tier)                 │  │
│  │  • Rate limiting & throttling                                  │  │
│  │  • API versioning & lifecycle management                       │  │
│  │  • Usage analytics & cost tracking per application             │  │
│  │  • Authentication & authorization (Azure AD integration)       │  │
│  └────────────────────────────────────────────────────────────────┘  │
│                                                                      │
│  REST API Endpoints:                                                 │
│  ├─ /search/hybrid        - Multi-species hybrid search              │
│  ├─ /search/species/{id}  - Species-specific queries                 │
│  ├─ /documents/upload     - Manual document ingestion                │
│  ├─ /documents/status     - ETL pipeline monitoring                  │
│  ├─ /embeddings/generate  - Embedding service for other apps         │
│  ├─ /metadata/enrich      - Metadata enhancement service             │
│  └─ /analytics/usage      - Usage metrics & cost attribution         │
└──────────────────────────────┬───────────────────────────────────────┘
                               │
                  ┌────────────┴────────────┐
                  │                         │
                  ▼                         ▼
┌─────────────────────────────┐  ┌──────────────────────────────────┐
│  LLM APPLICATION LAYER      │  │  MANAGEMENT UI/PORTAL            │
│                             │  │                                  |
│  ┌────────────────────────┐ │  │  ┌────────────────────────────┐  │
│  │ RAG Chatbot (GPT-4o)   │ │  │  │ Admin Dashboard            │  │
│  │ • Species-aware        │ │  │  │ • ETL job monitoring       │  │
│  │ • Multi-turn context   │ │  │  │ • Index management         │  │
│  │ • Citation tracking    │ │  │  │ • User access control      │  │
│  └────────────────────────┘ │  │  │ • Cost & usage analytics   │  │
│                             │  │  │ • Data quality dashboard   │  │
│  ┌────────────────────────┐ │  │  └────────────────────────────┘  │
│  │ Document Analysis API  │ │  │                                  │
│  │ • Batch processing     │ │  │  ┌────────────────────────────┐  │
│  │ • Trend extraction     │ │  │  │ End-User Search UI         │  │
│  │ • Comparative analysis │ │  │  │ • Role-based views         │  │
│  └────────────────────────┘ │  │  │ • Saved searches           │  │
│                             │  │  │ • Export capabilities      │  │
│  ┌────────────────────────┐ │  │  │ • Feedback mechanisms      │  │
│  │ Research Assistant     │ │  │  └────────────────────────────┘  │
│  │ • Experiment summaries │ │  │                                  │
│  │ • Methodology finder   │ │  │  Authentication:                 │
│  │ • Result aggregation   │ │  │  Azure AD / SSO Integration      │
│  └────────────────────────┘ │  └──────────────────────────────────┘
└─────────────────────────────┘

═══════════════════════════════════════════════════════════════════════

                    NEW CAPABILITIES IN MVP

✓  MULTI-SPECIES: Poultry, Swine, Aqua in separate indexes
✓  API-FIRST: Other applications can leverage the data/AI
✓  GOVERNANCE: Role-based access, audit logs, compliance ready
✓  SCALABLE: Standard tier supports 500K docs, 3 species
✓  MANAGEABLE: Admin UI for monitoring, configuration, operations
✓  HIGH AVAILABILITY: 2 replicas, 99.9% SLA
✓  EXTENSIBLE: Plugin architecture for new data sources
✓  COST-AWARE: Usage tracking & attribution per department

═══════════════════════════════════════════════════════════════════════

                    ELEMENTS OF VOLATILITY ⚠️

🔄  Azure AI Strategy Evolution
    • Azure AI Foundry vs standalone OpenAI services
    • GPT model selection (4o vs 4.1 vs 5)
    • Microsoft Copilot Studio integration path unclear
    
🔄  Search Technology Direction
    • Azure AI Search vs potential ZFS native capabilities
    • Vector database alternatives (Cosmos DB, Pinecone, custom)
    • Semantic ranking model updates (L2 reranker changes)

🔄  ANH Enterprise AI Consolidation
    • Risk of mandate to use centralized AI platform
    • Potential integration with other nutrition tools
    • Corporate AI governance requirements TBD

🔄  Data Source Changes
    • SharePoint migration timeline uncertain
    • Innovation Center workflow standardization pending
    • New species requirements (Pet, Specialty) not scoped

⚡ MITIGATION: Loose coupling via API layer enables technology swaps
             without disrupting consuming applications. Incremental
             value delivery means benefits accrue even if re-work needed.

═══════════════════════════════════════════════════════════════════════

💰 MVP Cost: $1,200/month ($14,400 annually)
📈 Expected Value: $1.5M-2M annually (200-300 users, 3 species)
⏱️  Timeline: 6 months to production (Months 4-9)
👥 Serves: 200-300 R&D staff across 3 species

Diagram 3: Final Product Vision (Enterprise Scale)

┌─────────────────────────────────────────────────────────────────────────┐
│                  FINAL PRODUCT: ENTERPRISE PLATFORM                     │
│            "Integrated, Global, Multi-Species AI Platform"              │
│                    Timeline: Months 10-18 (9 months)                    │
└─────────────────────────────────────────────────────────────────────────┘

┌──────────────────────────────────────────────────────────────────────┐
│                    GLOBAL DATA ECOSYSTEM                             │
│                                                                      │
│  ┌────────────────────────────────────────────────────────────────┐  │
│  │                    UNIFIED DATA LAYER                          │  │
│  │  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐          │  │
│  │  │ SharePoint   │  │ ZFS Native   │  │ External     │          │  │
│  │  │ (Legacy)     │  │ Storage      │  │ Research DBs │          │  │
│  │  └──────┬───────┘  └──────┬───────┘  └──────┬───────┘          │  │
│  │         │                 │                 │                  │  │
│  │         └─────────────────┴─────────────────┘                  │  │
│  │                           │                                    │  │
│  │                  Unified Data Mesh                             │  │
│  │           (Data Catalog + Lineage + Quality)                   │  │
│  └────────────────────────────────────────────────────────────────┘  │
│                                                                      │
│  Species Coverage:                                                   │
│  ✓ Poultry  ✓ Swine  ✓ Aqua  ✓ Pet  ✓ Specialty                      │
│                                                                      │
│  Innovation Centers:                                                 │
│  ✓ North America (3)  ✓ Europe (2)  ✓ Asia-Pacific (2)               │
│  ✓ Latin America (1)                                                 │
└──────────────────────────────┬───────────────────────────────────────┘
                               │
                               ▼
┌──────────────────────────────────────────────────────────────────────┐
│              ENTERPRISE ETL & PROCESSING PLATFORM                    │
│                                                                      │
│  ┌────────────────────────────────────────────────────────────────┐  │
│  │  Azure Data Factory + Synapse Analytics                        │  │
│  │  • Real-time streaming for hot-path data                       │  │
│  │  • Batch processing for historical archives                    │  │
│  │  • Multi-region replication (US, EU, APAC)                     │  │
│  │  • Automated data quality & validation pipelines               │  │
│  │  • Change Data Capture (CDC) from ZFS                          │  │
│  └────────────────────────────────────────────────────────────────┘  │
│                                                                      │
│  ┌────────────────────────────────────────────────────────────────┐  │
│  │  AI Processing Pipeline                                        │  │
│  │  ├─ Advanced document understanding (Azure Doc Intelligence)   │  │
│  │  ├─ Multi-modal processing (text, images, tables, graphs)      │  │
│  │  ├─ Entity extraction (compounds, organisms, measurements)     │  │
│  │  ├─ Relationship mapping (studies → outcomes)                  │  │
│  │  ├─ Knowledge graph construction                               │  │
│  │  └─ Automated metadata tagging & enrichment                    │  │
│  └────────────────────────────────────────────────────────────────┘  │
└──────────────────────────────┬───────────────────────────────────────┘
                               │
                               ▼
┌──────────────────────────────────────────────────────────────────────┐
│          MULTI-TIER INTELLIGENT SEARCH & KNOWLEDGE LAYER             │
│                                                                      │
│  ┌────────────────────────────────────────────────────────────────┐  │
│  │  Azure AI Search - STANDARD S2/S3 (3 partitions, 3 replicas)   │  │
│  │  99.95% SLA | Multi-region | 1M+ documents                     │  │
│  │                                                                │  │
│  │  Federated Search Architecture:                                │  │
│  │  ├─ Global cross-species index (unified queries)               │  │
│  │  ├─ Species-specific indexes (optimized retrieval)             │  │
│  │  ├─ Regional indexes (data residency compliance)               │  │
│  │  └─ Temporal indexes (time-series research data)               │  │
│  └────────────────────────────────────────────────────────────────┘  │
│                                                                      │
│  ┌────────────────────────────────────────────────────────────────┐  │
│  │  Knowledge Graph (Neo4j or Cosmos DB Gremlin)                  │  │
│  │  • Entity relationships: compounds → studies → outcomes        │  │
│  │  • Temporal connections: research evolution over time          │  │
│  │  • Cross-species insights: transferable learnings              │  │
│  │  • Citation networks: methodology lineage                      │  │
│  └────────────────────────────────────────────────────────────────┘  │
└──────────────────────────────┬───────────────────────────────────────┘
                               │
                               ▼
┌──────────────────────────────────────────────────────────────────────┐
│                  UNIFIED AI & API PLATFORM                           │
│                                                                      │
│  ┌────────────────────────────────────────────────────────────────┐  │
│  │  Azure API Management - PREMIUM ($3,000/mo)                    │  │
│  │  • Multi-region deployment (low latency globally)              │  │
│  │  • Advanced throttling & quota management                      │  │
│  │  • Cost center attribution & chargeback                        │  │
│  │  • SLA monitoring & automatic failover                         │  │
│  │  • Developer portal for internal/external API consumers        │  │
│  └────────────────────────────────────────────────────────────────┘  │
│                                                                      │
│  Public API Surface (versioned, documented):                         │
│  ┌──────────────────────────────────────────────────────────────┐    │
│  │ SEARCH APIs                    │ INTELLIGENCE APIs           │    │
│  │ • /v2/search/unified           │ • /v2/insights/trends       │    │
│  │ • /v2/search/species/{id}      │ • /v2/insights/comparative  │    │
│  │ • /v2/search/semantic          │ • /v2/insights/predictive   │    │
│  │ • /v2/search/graph             │ • /v2/insights/anomaly      │    │
│  │                                │                             │    │
│  │ DATA APIs                      │ MANAGEMENT APIs             │    │
│  │ • /v2/documents/ingest         │ • /v2/admin/pipelines       │    │
│  │ • /v2/documents/batch          │ • /v2/admin/indexes         │    │
│  │ • /v2/embeddings/generate      │ • /v2/admin/costs           │    │
│  │ • /v2/metadata/extract         │ • /v2/admin/usage           │    │
│  └──────────────────────────────────────────────────────────────┘    │ 
└──────────────────────────────┬───────────────────────────────────────┘
                               │
         ┌─────────────────────┴─────────────────────┐
         │                                           │
         ▼                                           ▼
┌────────────────────────────┐         ┌─────────────────────────────┐
│  INTELLIGENT APPLICATIONS  │         │  INTEGRATION ECOSYSTEM      │
│                            │         │                             │
│  ┌──────────────────────┐  │         │  ┌───────────────────────┐  │
│  │ Advanced RAG Chatbot │  │         │  │ Microsoft Copilot     │  │
│  │ • Multi-agent        │  │         │  │ Integration           │  │
│  │ • Context-aware      │  │         │  └───────────────────────┘  │
│  │ • Voice interface    │  │         │                             │
│  │ • Mobile apps        │  │         │  ┌───────────────────────┐  │
│  └──────────────────────┘  │         │  │ PowerBI Dashboards    │  │
│                            │         │  │ (Research Analytics)  │  │
│  ┌──────────────────────┐  │         │  └───────────────────────┘  │
│  │ Research Assistant   │  │         │                             │
│  │ • Lit review         │  │         │  ┌───────────────────────┐  │
│  │ • Experiment design  │  │         │  │ Teams Integration     │  │
│  │ • Statistical tools  │  │         │  │ (Embedded Search)     │  │
│  │ • Report generation  │  │         │  └───────────────────────┘  │
│  └──────────────────────┘  │         │                             │
│                            │         │  ┌───────────────────────┐  │
│  ┌──────────────────────┐  │         │  │ 3rd Party Apps        │  │
│  │ Innovation Scout     │  │         │  │ (External APIs)       │  │
│  │ • Trend detection    │  │         │  └───────────────────────┘  │
│  │ • Gap analysis       │  │         └─────────────────────────────┘
│  │ • IP landscape       │  │
│  │ • Competitor intel   │  │
│  └──────────────────────┘  │
│                            │
│  ┌──────────────────────┐  │
│  │ Formulation Advisor  │  │
│  │ • Recipe optimization│  │
│  │ • Cost modeling      │  │
│  │ • Regulatory check   │  │
│  │ • Sustainability     │  │
│  └──────────────────────┘  │
└────────────────────────────┘

═══════════════════════════════════════════════════════════════════════

                    ENTERPRISE CAPABILITIES

✓  GLOBAL SCALE: 1M+ documents, 1,000+ users, 8 innovation centers
✓  MULTI-REGION: Low-latency access worldwide with data residency
✓  HIGH AVAILABILITY: 99.95% SLA with automatic failover
✓  ENTERPRISE SECURITY: SSO, MFA, RBAC, audit logs, compliance
✓  KNOWLEDGE GRAPH: Relationship-based insights beyond search
✓  ADVANCED AI: Multi-modal understanding, predictive analytics
✓  FULL INTEGRATION: Seamless with Microsoft 365, Teams, PowerBI
✓  EXTENSIBLE: Public APIs enable 3rd party innovation
✓  GOVERNED: Data catalog, lineage, quality, cost attribution

═══════════════════════════════════════════════════════════════════════

                    ASSUMPTIONS & DEPENDENCIES

📋 ASSUMPTIONS (What We Believe Will Happen):
   • ZFS becomes primary data repository (18-24 month timeline)
   • Microsoft Copilot Studio matures for SharePoint integration
   • ANH establishes enterprise AI governance framework
   • Innovation Centers standardize on common metadata schemas
   • Budget approval for scale-up infrastructure

🔗 DEPENDENCIES (What Must Happen First):
   • MVP demonstrates sustained value across 3 species
   • IT approves multi-region deployment security model
   • Legal completes data residency & compliance review
   • Innovation Centers commit to workflow standardization
   • Executive sponsorship for enterprise-wide rollout

⚠️  ADAPTABILITY ZONES (Likely to Change):

    🔄 Technology Stack
       • Vector database: May shift from Azure AI Search to
         specialized solutions (Pinecone, Weaviate) or ZFS-native
       • LLM Provider: OpenAI vs Anthropic vs open-source
       • Embedding models: Text-embedding-3 vs domain-specific
       
    🔄 Data Architecture  
       • ZFS integration pattern undefined until platform stable
       • Knowledge graph schema evolves with cross-species needs
       • Real-time streaming requirements emerge from usage
       
    🔄 Organizational
       • Central AI team may consolidate all ML infrastructure
       • Corporate mandate may require specific cloud vendors
       • M&A activity could add new species/data sources
       
    🔄 Business Model
       • Chargeback model for API usage TBD
       • Partnership opportunities with feed manufacturers
       • Potential external monetization of anonymized insights

═══════════════════════════════════════════════════════════════════════

💰 Final Product Cost: $8,000-12,000/month ($96K-144K annually)
📈 Expected Value: $4M-6M annually (1,000 users, all species)
⏱️  Timeline: 9 months from MVP completion (Months 10-18)
👥 Serves: 1,000+ global R&D staff, external partners
🎯 ROI: 3,000-4,000% | Payback: <30 days

Implementation Timeline & Resource Plan

POV Phase (Complete - Weeks 1-6)

  • Budget: $360 (3 months)
  • Team: 2 FTE (1 engineer, 1 product owner)
  • Status: ✅ Completed - Value proven

MVP Phase (Months 4-9)

  • Budget: 14,400annually+14,400 annually +120K implementation
  • Team: 4-5 FTE
    • 2 Backend engineers (ETL, API development)
    • 1 Frontend engineer (Management UI)
    • 1 Data engineer (Pipeline optimization)
    • 1 Product manager + part-time UX designer
  • Key Milestones:
    • Month 4: Architecture design + multi-species data assessment
    • Month 5-6: ETL expansion to swine + aqua data
    • Month 7: API layer development + management UI
    • Month 8: Integration testing + security hardening
    • Month 9: Phased rollout to 200 users

Final Product Phase (Months 10-18)

  • Budget: 96K144Kannually+96K-144K annually +300K implementation
  • Team: 8-10 FTE
    • 3 Backend engineers (Knowledge graph, advanced AI)
    • 2 Frontend engineers (Applications, integrations)
    • 2 Data engineers (Multi-region pipelines)
    • 1 DevOps engineer (Infrastructure, monitoring)
    • 1 Product manager
    • 1 UX/UI designer
  • Key Milestones:
    • Month 10-11: Knowledge graph implementation
    • Month 12-13: Multi-region deployment
    • Month 14-15: Advanced AI applications
    • Month 16-17: Enterprise integrations
    • Month 18: Global rollout to 1,000 users

Risk Assessment & Mitigation

Technical Risks

Risk Impact Probability Mitigation
ZFS migration delays HIGH MEDIUM Maintain SharePoint connectors in parallel; abstract data source layer
Azure AI strategy shifts HIGH MEDIUM API abstraction layer enables LLM provider swaps without app changes
Performance degradation at scale HIGH LOW Incremental load testing; tiered architecture allows scaling
Knowledge graph complexity MEDIUM MEDIUM Start with simple relationships; expand based on user needs
Multi-region latency MEDIUM LOW CDN for static content; regional caching strategies

Organizational Risks

Risk Impact Probability Mitigation
Budget cuts during MVP HIGH LOW Focus on quick wins; demonstrate ROI early and often
Innovation Center resistance MEDIUM MEDIUM Co-design sessions; show time savings with their data
Corporate AI consolidation HIGH MEDIUM Public API design facilitates integration with any platform
Resource availability MEDIUM MEDIUM Phased approach allows team ramping; external contractors for peaks
Competing priorities MEDIUM HIGH Executive sponsorship; tie to corporate OKRs

Success Metrics by Phase

POV Metrics (Achieved ✅)

  • Search success rate: 72% (target: 60%)
  • Time to information reduction: 60% (target: 40%)
  • User satisfaction: 8.3/10 (target: 7/10)
  • ROI: 5,436% (target: 500%)

MVP Metrics (Targets)

  • Adoption: 80% of target users (200) active monthly
  • Coverage: 3 species with 150K+ documents indexed
  • Availability: 99.9% uptime during business hours
  • API Usage: 50K API calls/month from 3+ applications
  • Time Savings: 7,500 hours/year ($562K value)
  • User Satisfaction: 8.5/10 across all species

Final Product Metrics (Targets)

  • Global Adoption: 85% of target users (1,000) active monthly
  • Coverage: 5 species, 1M+ documents, 8 innovation centers
  • Availability: 99.95% SLA with <100ms P50 latency
  • API Ecosystem: 20+ consuming applications, 500K calls/month
  • Time Savings: 50,000 hours/year ($3.75M value)
  • Innovation Impact: 20+ new insights leading to product improvements
  • User Satisfaction: 9/10 with NPS >50

Governance & Compliance Framework

Data Governance

  • Classification: Proprietary research data (Confidential)
  • Retention: 7-year minimum per regulatory requirements
  • Access Control: Role-based (Researcher, Manager, Admin)
  • Audit Logging: All queries, API calls, admin actions
  • Data Quality: Automated validation, human review queue

Security Controls

  • Authentication: Azure AD SSO with MFA required
  • Authorization: Least-privilege model with regular access reviews
  • Encryption: At-rest (AES-256) and in-transit (TLS 1.3)
  • Network: Private endpoints, no public internet exposure
  • Monitoring: 24/7 SOC integration, automated threat detection

Compliance Requirements

  • GDPR: Data residency in EU for European data
  • SOX: Financial data handling procedures
  • ISO 27001: Information security management
  • GxP: Good practices for regulated studies
  • SOC 2 Type II: Service organization controls

Financial Summary

Phase Duration Infrastructure Implementation Total Value/Year ROI
POV 6 weeks $360 $30K (internal) $30K $1.56M 5,436%
MVP 6 months $14K $120K $134K $2.0M 1,400%
Final 9 months $96-144K $300K $400K $4-6M 1,000-1,400%

3-Year Total Cost of Ownership

  • Capital: $450K (implementation)
  • Operating: $400K (infrastructure, years 1-3)
  • Personnel: $1.2M (dedicated team, years 1-3)
  • Total 3-Year TCO: $2.05M

3-Year Value Realization

  • Time Savings: $15M (conservative estimate)
  • Quality Improvements: $3M (reduced duplicate work)
  • Innovation Acceleration: $2M (faster time-to-market)
  • Total 3-Year Value: $20M

Net Present Value (NPV): $17.95M

3-Year ROI: 876%


Executive Decision Framework

Recommendation: PROCEED WITH MVP

Rationale:

  1. Proven Value: POV demonstrated 5,400% ROI with minimal investment
  2. Manageable Risk: Incremental approach limits exposure; technology volatility mitigated by abstraction layers
  3. Strategic Alignment: Supports R&D acceleration, data-driven innovation, digital transformation
  4. Competitive Advantage: Faster research cycles, cross-species insights, institutional knowledge retention
  5. Extensibility: Platform approach enables future applications beyond search

Critical Success Factors:

  • ✅ Executive sponsorship at VP+ level
  • ✅ Dedicated team with protected capacity
  • ✅ Innovation Center engagement and co-design
  • ✅ IT partnership for infrastructure and security
  • ✅ Quarterly value demonstrations to maintain momentum

Go/No-Go Criteria After MVP (Month 9):

  • ✅ 70%+ user adoption in pilot group
  • ✅ 8/10+ user satisfaction score
  • ✅ <5% technical incident rate
  • ✅ Clear path to additional species/centers
  • ✅ Validated API usage from 2+ applications
  • ✅ Positive NPV over 3-year horizon

Acknowledgment of Volatility

We recognize that this roadmap contains multiple elements of uncertainty:

  1. Technology Choices: Azure AI landscape is rapidly evolving. We've designed for modularity to enable swapping components without rewriting applications.

  2. Corporate Strategy: ANH's broader AI strategy may mandate consolidation or specific platforms. Our API-first approach facilitates integration regardless of underlying technology.

  3. Data Sources: ZFS timeline and capabilities are uncertain. We maintain flexibility to work with SharePoint, ZFS, or hybrid models.

  4. Organizational Change: Innovation Center workflows and metadata standards are evolving. Our schema design accommodates variation while encouraging standardization.

Value Opportunity Exceeds Re-work Risk: Even if significant architectural changes are required during MVP or Final Product phases, the time savings and research quality improvements justify the investment. The POV proved we can deliver 5,400% ROI in 6 weeks - the learning and value from MVP will be retained regardless of future platform decisions.

Incremental Approach Limits Downside: By validating assumptions and demonstrating value at each phase, we minimize sunk costs if direction changes. Each phase delivers standalone value while building toward the long-term vision.


Appendix: Technology Decision Log

Key Architectural Decisions

AD-001: Azure AI Search vs Alternatives

  • Decision: Azure AI Search for MVP and Final Product
  • Rationale: Native Azure integration, proven scale, hybrid search capabilities
  • Volatility: MEDIUM - Could shift to specialized vector DB or ZFS-native
  • Re-work Impact: LOW - API abstraction limits application changes

AD-002: Durable Functions vs Azure Data Factory

  • Decision: Durable Functions for POV/MVP, evaluate ADF for Final Product
  • Rationale: Faster development, lower cost, adequate for <500K docs
  • Volatility: LOW - Proven pattern for ETL orchestration
  • Re-work Impact: LOW - Refactoring isolated to ETL layer

AD-003: GPT-4o for RAG

  • Decision: GPT-4o as primary LLM, prepare for GPT-5 migration
  • Rationale: Production-ready, 128K context, multi-modal
  • Volatility: HIGH - LLM landscape changing rapidly
  • Re-work Impact: VERY LOW - LLM abstraction layer enables easy swaps

AD-004: Separate Indexes per Species

  • Decision: Multiple species-specific indexes vs unified
  • Rationale: Optimized retrieval, easier scaling, clear cost attribution
  • Volatility: LOW - Proven pattern for multi-tenancy
  • Re-work Impact: MEDIUM - Schema changes require reindexing

AD-005: API-First Architecture

  • Decision: Build comprehensive REST API before applications
  • Rationale: Enables ecosystem, facilitates integration, future-proofs
  • Volatility: VERY LOW - Industry best practice
  • Re-work Impact: NONE - APIs are the interface, not implementation

Document Version v0.2 | Created: Oct 30, 2025 | Owner: CDS CloudOps Team
Next Review: After MVP Phase (Month 9)